I B.Tech - I Semester - Regular / Supplementary Examinations - APRIL 2022

BASIC ELECTRICAL \& ELECTRONICS ENGINEERING

(Common to CIVIL, CSE, IT)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

UNIT - I

1. a) Determine the value of resistance between the 7 M terminals $\mathrm{A}-\mathrm{B}\left(\mathrm{R}_{\mathrm{AB}}\right)$ for the network shown in Figure.1?

Figure. 1
b) Apply the superposition theorem to the circuit shown 7 M in Figure. 2 to find the current flowing through 6Ω resistor.

Figure. 2

OR

2. a) Apply the mesh analysis on the circuit shown in 7 M Figure 3 and find the current I flowing in the 2Ω resistor.

Figure. 3
b) Simplify the circuit shown in Figure. 4 using the 7 M Norton's theorem and determine the current through 4Ω resistor.

Figure. 4

UNIT - II

3. a) (i) Draw the constructional features of a DC machine 5 M and give their functions.
(ii)Why is commutator employed in DC machines? $\quad 2 \mathrm{M}$
b) Derive emf equation of a DC generator (or DC 7 M machine).

OR
4. a) Explain the working principle of a DC motor with 7 M appropriate sketches.
b) Derive an expression for the speed of a DC motor in 7 M terms of back emf and flux per pole.

UNIT-III

5. a) Develop an expression for the emf induced in a 7 M transformer winding. Show that the emf induced per turn in primary is equal to the emf per turn in secondary.
b) Determine the efficiency of a single-phase 7 M transformer by utilizing the open circuit and short circuit tests. Draw the circuit diagrams for each test and mention uses of these tests.

OR
6. a) Illustrate the constructional details of single phase 7 M transformer.
b) Explain the working principle of a three phase 7 M induction motor with relevant sketches.

UNIT - IV

7. a) Draw the circuit diagram of Half-wave rectifier and derive the expressions for average value and R.M.S value.
b) Generalize the working of Zener diode as a voltage 7 M
regulator.

OR
8. a) Explain the working of p-n junction diode in forward 7 M and reverse bias conditions. Draw its V-I characteristics.
b) What is the use of filter capacitor? With suitable 7 M example, differentiate the operation and output of rectifiers with and without filter capacitor.

UNIT - V

9. a) Obtain the expression for gain of the non- inverting 7 M configuration of op-amp.
b) Distinguish the different characteristics of ideal and 7 M practical op-amp.

OR

10. a) What is a voltage follower? Explain its operation 7 M with necessary diagrams and expressions.
b) Explain how an op-amp can be used as an inverting 7 M amplifier, non-inverting amplifier? Derive expressions for output voltages.
